Evasion of the Interferon-Mediated Antiviral Response by Filoviruses
نویسنده
چکیده
The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.
منابع مشابه
Antiviral Properties of ISG15
The type I interferon system plays a critical role in limiting the spread of viral infection. Viruses induce the production of interferon (IFN), which after binding to the IFN-α/β receptor (IFNAR), and triggering of the JAK/STAT signaling cascade, results in the induction of interferon-stimulated genes (ISGs). These ISGs function to inhibit viral replication and to regulate the host immune resp...
متن کاملCamouflage and Misdirection: The Full-On Assault of Ebola Virus Disease
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppressio...
متن کاملA Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation.
Interferons constitute the earliest immune response against viral infection. They elicit antiviral effects as well as multiple biological responses involved in cell growth regulation and immune activation. Because the interferon-induced cellular antiviral response is the primary defense mechanism against viral infection, many viruses have evolved strategies to antagonize the inhibitory effects ...
متن کاملHuman cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection.
Human cytomegalovirus (HCMV) attachment and entry stimulates the expression of cellular interferon-inducible genes, many of which target important cellular functions necessary for viral replication. Double-stranded RNA-dependent host protein kinase (PKR) is an interferon-inducible gene product that limits viral replication by inhibiting protein translation in the infected cell. It was anticipat...
متن کاملSilencing STATs: lessons from paramyxovirus interferon evasion.
The signal transducer and activator of transcription (STAT) family proteins are essential mediators of cytokine and growth factor functions. The interferon (IFN) family of cytokines is well known as modulators of both innate and adaptive anti-microbial immunity. In response to the evolutionary struggle between host and pathogen, many viruses have developed strategies to bypass the IFN antiviral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010